
The Shadow Threat: Understanding Model
Stealing and Inference Attacks

1 Introduction

In our increasingly digital world, artificial intelligence (AI) has grown from a niche re-
search topic to a pervasive technology underpinning critical aspects of modern society.
From healthcare diagnostics to financial fraud detection, AI systems analyze vast quan-
tities of data, discover patterns, and make predictions with remarkable accuracy. Or-
ganizations invest millions in developing these models, which now represent significant
intellectual property and competitive advantage. Yet, this widespread deployment of AI
has introduced a new category of security vulnerabilities that few had anticipated—model
stealing and inference attacks.

Model stealing attacks are techniques that enable adversaries to extract or replicate pro-
prietary machine learning (ML) models through carefully crafted interactions. Inference
attacks, meanwhile, allow attackers to extract sensitive information about the training
data used to build these models, potentially revealing confidential information. Together,
these attacks represent a substantial threat to the AI ecosystem, undermining both busi-
ness investments and data privacy.

The significance of this threat has grown alongside the proliferation of AI services in cloud
environments and ML-as-a-Service (MLaaS) platforms. Companies including Google,
Amazon, Microsoft, and numerous startups now offer APIs allowing customers to query
sophisticated machine learning models without needing to develop or deploy them in-
house. While this democratizes access to advanced AI capabilities, it also creates new
attack surfaces where proprietary models and sensitive data become vulnerable to ex-
traction and reverse engineering. As Tramèr et al. (2016) demonstrated in their seminal
work, many commercial ML APIs can be completely compromised with a surprisingly
small number of queries.

The implications extend beyond mere intellectual property theft. Healthcare models
trained on sensitive patient records might unintentionally leak protected health infor-
mation. Financial models could reveal proprietary trading strategies or expose patterns
in fraud detection that criminals can subsequently exploit. Corporate security systems
relying on machine learning for threat detection might themselves become vehicles for
data exfiltration. As our reliance on AI continues to grow, understanding and mitigat-
ing these threats becomes increasingly crucial for organizations developing, deploying, or
consuming AI technologies.
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2 Understanding Model Stealing & Inference Attacks

Model stealing attacks, at their core, aim to duplicate the functionality of a target machine
learning model without authorized access to its parameters or architecture. Through a
process sometimes called model extraction or model replication, attackers systematically
query a target model and use the responses to train their own ”knockoff” model that
approximates the target’s behavior. Successful model stealing undermines the substantial
investments organizations make in collecting training data, designing model architectures,
and fine-tuning parameters. According to Chandrasekaran et al. (2020), developing a
state-of-the-art machine learning model can cost millions in research, data collection, and
computational resources—investments that can be compromised through model stealing
attacks costing mere thousands.

The technical objective of model stealing varies based on the attacker’s goals. In equation-
stealing attacks, the adversary aims to recover the exact mathematical parameters of
the target model. In functionality-stealing attacks, the focus shifts to reproducing the
model’s behavior on inputs of interest, without necessarily matching its internal structure.
As Orekondy et al. (2019) demonstrated, even black-box access through standard APIs
can yield substitute models achieving over 90% accuracy compared to the target model,
effectively replicating its core capabilities.

Inference attacks represent a different but related threat, focusing on extracting informa-
tion about the data used to train a model rather than the model itself. These attacks
exploit the fact that machine learning models inevitably memorize aspects of their training
data, creating subtle statistical patterns that attackers can detect and exploit. Through
carefully crafted queries and analysis of the model’s responses, attackers can determine
whether specific data points were used in training, extract characteristics about the train-
ing dataset, or even reconstruct individual training examples.

The impact of these attacks spans numerous industries. In healthcare, where patient
data is strictly protected by regulations like HIPAA, membership inference attacks might
reveal whether a particular individual’s records were used to train a diagnostic model,
potentially violating privacy laws. In the financial sector, extracted trading models could
undermine proprietary strategies that financial institutions have developed through years
of research. In cybersecurity, compromised threat detection models might fail to identify
attacks specifically designed to evade them. As Shokri et al. (2017) noted, the ability
to determine whether someone’s data was used to train a model can itself constitute a
serious privacy breach, regardless of whether the actual data is recovered.

What makes these attacks particularly concerning is their relative accessibility. Many
require only API access to the target model, with no need for sophisticated insider knowl-
edge or direct access to the system hosting the model. This low barrier to entry means
that even adversaries with moderate technical skills can potentially execute damaging
attacks against valuable AI assets.
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3 How Model Stealing & Inference Attacks Work

The technical mechanisms behind model stealing and inference attacks leverage the fun-
damental properties of machine learning systems, particularly their behavior when pro-
cessing inputs at or beyond the boundaries of their training distribution. Understanding
these mechanisms provides insight into why these attacks succeed and how they might be
mitigated.

3.1 Query-based Model Extraction

The most common approach to model stealing involves systematically querying the target
model and using the responses to train a substitute model. The process typically follows
several stages:

First, attackers design a query strategy to efficiently explore the target model’s deci-
sion space. For classification models, this might involve generating inputs near decision
boundaries where the model’s behavior reveals the most information about its internal
structure. For regression models, attacks often focus on identifying key inflection points
in the target function. Papernot et al. (2017) demonstrated that adversaries can construct
highly effective substitute models using just a small set of synthetic inputs strategically
chosen to maximize information gain with each query.

Next, the responses from these queries are collected and used as labeled data to train the
substitute model. Depending on the attack sophistication, this training might incorporate
knowledge distillation techniques, where the probabilities or confidence values returned
by the target model (rather than just the final classifications) are used to better transfer
knowledge to the substitute model. Orekondy et al. (2019) showed that leveraging these
confidence scores can significantly improve the fidelity of stolen models compared to using
only the final classifications.

The mathematical foundation of model extraction can be formalized as an optimization
problem. If we denote the target model as f and the substitute model as g with parameters
θ, the objective is to minimize the expected difference between the two models’ outputs
across the input space X :

min
θ

Ex∼X [L(f(x), g(x; θ))] (1)

where L is an appropriate loss function measuring the discrepancy between the outputs.
This optimization is typically performed using gradient-based methods, with the substi-
tute model’s architecture either matching the suspected architecture of the target model
or chosen to provide sufficient capacity for approximating its behavior.
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3.2 Membership Inference Attacks

Membership inference attacks determine whether specific data points were used to train
a particular model. These attacks exploit the fact that machine learning models typically
exhibit different behaviors on examples they were trained on versus examples they’ve
never seen before—specifically, they often display higher confidence or lower loss values
on training examples.

The attack methodology, pioneered by Shokri et al. (2017), typically involves training
”attack models” that distinguish between training and non-training examples based on the
target model’s outputs. The attack model learns to recognize patterns in the confidence
scores or output distributions that indicate whether an example was likely used in training.
Remarkably, these attack models can be trained without any knowledge of the target
model’s training data, using only similar data from the same domain and the black-box
outputs of the target model.

The effectiveness of membership inference attacks is closely linked to the degree of overfit-
ting in the target model. Models that memorize their training data rather than learning
generalizable patterns are particularly vulnerable, as they produce notably different out-
puts for training versus non-training examples. Yeom et al. (2018) formalized this rela-
tionship, showing that the generalization gap—the difference between a model’s accuracy
on training data versus test data—directly correlates with its vulnerability to membership
inference attacks.

3.3 Property Inference Attacks

Moving beyond membership inference, property inference attacks aim to extract aggre-
gate properties of the training dataset without necessarily identifying specific training
examples. For instance, an attacker might determine the proportion of training examples
belonging to a particular demographic group or exhibiting certain characteristics, even if
those properties aren’t directly related to the model’s primary task.

These attacks, detailed by Ganju et al. (2018), typically work by analyzing subtle statis-
tical patterns in the model’s parameters or outputs that correlate with specific properties
of the training data. For example, a model trained predominantly on data from one
demographic group might exhibit slightly different decision boundaries or confidence pat-
terns compared to a model trained on a more diverse dataset, even if both models achieve
similar overall accuracy.

Property inference becomes particularly concerning when the inferred properties might
reveal sensitive attributes that were inadvertently captured in the training data but were
not intended to influence the model’s decisions. For instance, a hiring model might un-
intentionally memorize correlations between certain employment outcomes and protected
attributes like race or gender, potentially exposing an organization to legal liability if
these patterns can be extracted through property inference attacks.
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3.4 Side-Channel Attacks on ML Models

Side-channel attacks represent a more specialized category, extracting information from
physical or operational characteristics of the system running the model rather than from
the model’s logical outputs. These attacks leverage timing information, power consump-
tion, electromagnetic emissions, or other physical manifestations of the computation pro-
cess to infer details about the model or its inputs.

In the context of neural networks, Batina et al. (2019) demonstrated that power analysis
attacks can extract the weights of a neural network by measuring the power consumption
during forward propagation operations. Similarly, Hong et al. (2018) showed that cache
timing attacks can reveal whether specific features influence a model’s decision, effectively
leaking information about the model’s internal structure.

These side-channel attacks are particularly relevant in edge computing scenarios, where
models run on physical devices accessible to attackers, or in cloud environments where
multiple tenants might share the same physical hardware. While requiring more special-
ized expertise and equipment than pure query-based attacks, side-channel approaches can
sometimes extract model information with fewer queries or overcome defenses designed
to prevent logical inference attacks.

4 Categories of Model Stealing & Inference Attacks

Understanding the taxonomy of model stealing and inference attacks helps in assessing
risk and designing appropriate defenses. These attacks can be categorized based on the
adversary’s knowledge, access level, and specific objectives.

4.1 White-box vs. Black-box Attacks

The distinction between white-box and black-box attacks reflects the level of access and
knowledge available to the attacker:

In white-box scenarios, the adversary has complete access to the model, including its
architecture, parameters, and training methodology. While this might seem unrealistic,
it can occur in contexts like federated learning, where participants need access to model
details but shouldn’t access others’ training data. White-box attacks are particularly
dangerous as they can directly exploit known vulnerabilities in the model’s architecture
or training process. Nasr et al. (2019) demonstrated that white-box access enables highly
efficient membership inference attacks that can extract significant amounts of training
data information.

Black-box attacks, in contrast, assume the adversary can only query the model through
a controlled interface and observe the outputs, without access to internal details. These
attacks are more realistic in many commercial contexts but require more sophisticated
techniques to extract useful information. Despite these limitations, Tramèr et al. (2016)
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showed that even black-box access is often sufficient to steal high-performing substitute
models, especially when confidence scores or probability distributions are returned rather
than just final classifications.

4.2 API-based Model Stealing

API-based model stealing specifically targets machine learning models exposed through
public or private APIs. These attacks systematically query the API with carefully con-
structed inputs and use the responses to train a substitute model. The effectiveness of
these attacks depends on several factors:

Query efficiency becomes crucial when APIs impose rate limits or charge per query. At-
tackers must maximize information gain per query to extract the model before hitting
these limits or incurring prohibitive costs. Chandrasekaran et al. (2020) demonstrated
strategies that can extract models using 10-100x fewer queries than naive approaches by
focusing on decision boundaries and areas of high uncertainty.

Response granularity significantly impacts attack effectiveness. APIs returning proba-
bility distributions or confidence scores leak substantially more information than those
returning only final classifications. Krishna et al. (2020) quantified this difference, show-
ing that extracting equivalent models required orders of magnitude more queries when
limited to label-only responses compared to confidence scores.

Model complexity also plays a role, with simpler models generally being easier to extract.
However, Orekondy et al. (2019) showed that even complex deep learning models can be
effectively stolen with sufficiently sophisticated extraction techniques, particularly when
leveraging transfer learning from existing models in similar domains.

4.3 Adversarial Inference Attacks

Adversarial inference attacks combine inference techniques with adversarial example gen-
eration, creating inputs specifically designed to maximize information leakage from the
target model. Unlike standard inference attacks that work with natural inputs, adversarial
approaches actively generate or modify inputs to exploit the model’s vulnerabilities.

Model inversion attacks, pioneered by Fredrikson et al. (2015), attempt to reconstruct
training examples by optimizing inputs to maximize the model’s confidence for a particular
class or output. For instance, an attacker might extract a recognizable facial image from a
facial recognition model by finding the input that maximizes the model’s confidence score
for a specific identity. These attacks can be particularly concerning for models trained on
sensitive or private data.

Attribute inference attacks, a specialized form of property inference, use adversarial tech-
niques to extract sensitive attributes of training examples. Melis et al. (2019) demon-
strated that in collaborative learning settings, an adversary could craft updates that
reveal whether training data contained specific attributes, effectively extracting private
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information from other participants’ data without directly accessing it.

4.4 Privacy-focused Model Attacks

Privacy-focused attacks specifically target the extraction of private or sensitive informa-
tion from machine learning models, whether about the training data or the model itself.

Memorization exploitation attacks target models trained on textual data, which often
memorize specific sequences from their training data. Carlini et al. (2021) showed that
large language models can be prompted to regurgitate private training data, including
personally identifiable information, credit card numbers, and medical records, by crafting
inputs that trigger this memorized content.

Dataset reconstruction attacks attempt to regenerate plausible examples from the original
training dataset. While exact reconstruction is typically infeasible, Zhang et al. (2020)
demonstrated that generative models could produce synthetic examples statistically simi-
lar to the original training data, potentially revealing sensitive patterns or characteristics.

Training data extraction attacks combine multiple inference techniques to extract actual
training examples. For instance, Salem et al. (2020) showed that by combining member-
ship inference with model inversion, attackers could identify which examples were in the
training set and then reconstruct approximations of those examples, effectively breaching
the privacy of the original data contributors.

5 Where & When These Attacks Are Used

Model stealing and inference attacks manifest across various domains where AI models
process valuable or sensitive information. Understanding these contexts helps to prioritize
defensive measures based on the specific risks each domain faces.

5.1 Cloud-based AI Services

Cloud-based AI platforms and MLaaS offerings represent prime targets for model stealing
attacks due to their accessibility and the value of the models they expose. According
to Tramèr et al. (2016), many commercial ML APIs are highly vulnerable to extrac-
tion attacks, with experiments showing successful extraction of models from Google’s
Cloud Vision API, Amazon’s Rekognition, and similar services using only a few thousand
queries—far fewer than would be needed to train such models from scratch.

For attackers, the economic incentive is clear: for the cost of a few API calls (often less
than $100), they can extract models that cost millions to develop and train. This asymme-
try between attack cost and potential gain makes cloud AI services particularly attractive
targets. Organizations offering premium AI capabilities through APIs must carefully
balance making their services useful while preventing unauthorized model extraction.
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5.2 Healthcare AI Models

The healthcare sector presents unique challenges due to the sensitivity of patient data
and the high value of medical AI models. Diagnostic models trained on medical images
or patient records contain implicit information about the individuals in those datasets,
creating serious privacy concerns if compromised.

Membership inference attacks against healthcare models can reveal whether a specific
individual’s data was used for training, potentially exposing sensitive medical conditions
or treatments. Carlini et al. (2019) demonstrated that medical image segmentation models
were vulnerable to attacks that could extract information about distinctive anatomical
features in the training data, potentially identifying specific patients.

The regulatory implications are significant, as healthcare data breaches through model
inference could violate regulations like HIPAA in the United States or GDPR in Europe.
Organizations deploying healthcare AI must therefore implement particularly robust pro-
tections against inference attacks to maintain both regulatory compliance and patient
trust.

5.3 Finance & Fraud Detection Systems

Financial institutions invest heavily in proprietary ML models for risk assessment, fraud
detection, and algorithmic trading. These models represent significant competitive advan-
tages, with their effectiveness directly impacting profitability and security. Model stealing
attacks in this domain can undermine competitive positions or enable adversaries to evade
fraud detection systems.

Credit scoring models, if extracted, could allow individuals to game the system by un-
derstanding exactly which factors influence their scores and to what degree. Trading
algorithms, if stolen, might enable competitors to anticipate trading patterns or replicate
proprietary strategies without the research investment. Fraud detection systems, once
extracted, could be analyzed to identify blind spots or weaknesses that fraudsters could
exploit.

Chandrasekaran et al. (2020) highlighted how model stealing techniques could be ap-
plied to financial models with high accuracy, potentially enabling adversaries to replicate
behaviors of proprietary trading algorithms through careful observation of their outputs
over time. The financial incentives for such attacks are particularly strong given the direct
monetary value these models represent.

5.4 Autonomous Systems & Deep Learning Models

As autonomous vehicles, robotics, and other automated physical systems increasingly rely
on deep learning models for perception and decision-making, the security of these models
becomes a matter of physical safety. Model stealing attacks against autonomous systems
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could enable adversaries to identify vulnerabilities or blind spots that might be exploited
to cause malfunctions or accidents.

Computer vision models used in autonomous vehicles, for instance, might be extracted
and analyzed to identify conditions under which they fail to detect obstacles or misclassify
road signs. Xiao et al. (2019) demonstrated that extracted vision models could be used to
generate adversarial examples that reliably cause misclassifications, potentially creating
safety hazards if deployed against autonomous systems.

Similarly, robotics control models might be extracted to identify operational boundaries
or failure modes that could be exploited to cause disruptions in manufacturing or logistics
systems. The physical consequences of such attacks make them particularly concerning,
as they extend the impact beyond data or intellectual property to potential harm in the
physical world.

6 Real-World Case Studies

Examining documented incidents provides valuable insights into how model stealing and
inference attacks manifest in practice and the challenges they present for organizations
deploying AI systems.

6.1 The ML Model Marketplace Incident

In 2019, a prominent machine learning marketplace (anonymized for legal reasons) ex-
perienced a significant security incident when researchers discovered they could extract
proprietary models offered through the platform’s API services. The researchers, who later
published their findings with the marketplace’s permission, developed a technique that
systematically queried the models with carefully crafted inputs and used the responses to
train substitute models (Orekondy et al., 2019).

The attack proved remarkably efficient, extracting models with over 90% functional sim-
ilarity using fewer than 100,000 queries—a fraction of what would be required to train
such models from scratch. The extracted models replicated complex behaviors including
object detection, sentiment analysis, and specialized industry-specific classification tasks
that represented significant intellectual property investments by their creators.

The marketplace had implemented several standard security measures, including API
rate limiting, user authentication, and monitoring for suspicious activity patterns. How-
ever, these measures proved insufficient against determined adversaries who distributed
their queries across multiple accounts and time periods to avoid triggering rate limits or
anomaly detection systems.

The incident highlighted several critical lessons:

1. Standard API security measures alone are insufficient protection against model steal-
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ing attacks

2. The economic incentives for model theft are compelling given the asymmetric costs
of development versus extraction

3. Organizations offering ML models through APIs need specialized defenses specifi-
cally designed for the unique characteristics of these assets

Following the incident, the marketplace implemented additional protective measures,
including differential privacy techniques, output perturbation, and more sophisticated
anomaly detection specifically calibrated to identify extraction attempts. They also re-
vised their pricing models to better align costs with the information value extracted
through queries, making systematic extraction attacks economically less viable.

6.2 The Medical Diagnostics Privacy Breach

In 2021, researchers identified a significant privacy vulnerability in a commercial medical
diagnostics system that used deep learning to analyze medical images for disease indi-
cators. Through careful application of membership inference techniques, the researchers
demonstrated that the model unintentionally leaked information about specific training
examples, potentially exposing sensitive patient data (Carlini et al., 2021b).

The attack combined several inference techniques, including shadow model training and
confidence score analysis, to determine with high probability whether specific medical im-
ages had been used to train the diagnostic model. By comparing the model’s behavior on
known examples versus suspected training examples, the researchers achieved membership
inference accuracy exceeding 80% for distinctive medical cases.

This capability raised serious privacy and regulatory concerns, as it effectively revealed
which patients’ data had been used in model development—information that should have
remained confidential under healthcare privacy regulations. While the attack didn’t re-
construct the actual medical images, the ability to confirm specific patients’ inclusion in
the training dataset constituted a privacy breach under most regulatory frameworks.

The incident revealed several critical insights:

1. Models trained on highly distinctive or unique examples (like rare medical condi-
tions) are particularly vulnerable to membership inference

2. Traditional anonymization of training data does not protect against inference attacks
that operate on the model rather than the data directly

3. Healthcare AI systems require specialized privacy-preserving techniques beyond
standard security measures

In response, the company implemented a comprehensive remediation strategy, including
retraining their models using differential privacy techniques, reducing the confidence in-
formation exposed through their API, and implementing a rigorous audit system to detect
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and prevent inference attacks. They also conducted a full disclosure to affected patients
and regulatory authorities, setting an important precedent for responsible handling of
inference-based privacy breaches in healthcare AI.

7 Defensive Strategies Against Model Stealing & In-

ference Attacks

Protecting machine learning models against stealing and inference attacks requires a multi-
layered approach that addresses vulnerabilities at different stages of the model lifecycle.
Effective defense strategies combine technical measures, operational practices, and archi-
tectural decisions to create robust protection while maintaining model utility.

7.1 Differential Privacy & Secure Training Methods

Differential privacy provides mathematical guarantees about the maximum information
leakage possible from a system, making it particularly valuable for preventing inference
attacks. By adding carefully calibrated noise during the training process, differential
privacy ensures that the model doesn’t become overly sensitive to any individual training
example, thereby limiting the effectiveness of membership inference attacks.

Formally, a machine learning algorithm A satisfies ϵ-differential privacy if for all datasets
D and D′ that differ by at most one example, and for all possible outputs S:

Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] (2)

Implementing differential privacy in machine learning typically involves techniques like:

• DP-SGD: Differentially private stochastic gradient descent, which adds noise to
gradients during training (Abadi et al., 2016)

• PATE: Private Aggregation of Teacher Ensembles, which trains multiple ”teacher”
models on disjoint subsets of the data and uses them to train a ”student” model
with privacy guarantees (Papernot et al., 2018)

• Output perturbation: Adding calibrated noise to model predictions to prevent
inference attacks while maintaining overall accuracy

These approaches introduce a privacy-utility tradeoff, with stronger privacy guarantees
typically reducing model accuracy. However, Papernot et al. (2018) demonstrated that
with careful implementation, differential privacy can provide strong protection against
inference attacks while maintaining acceptable performance for many applications.
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7.2 Query Rate Limiting & API Security

Controlling access to machine learning models through API security measures represents
a critical first line of defense against extraction attacks. Since model stealing typically
requires numerous queries to extract sufficient information, limiting query rates or volumes
can significantly increase the cost and difficulty of these attacks.

Effective API security for machine learning models extends beyond simple rate limiting
to include:

• Adaptive throttling: Adjusting rate limits based on the information content
of queries and responses, limiting queries near decision boundaries or with high
gradient values

• Stateful monitoring: Tracking query patterns over time to identify systematic
exploration of the model’s decision space characteristic of extraction attempts

• Output restriction: Limiting the granularity of model outputs, such as returning
only top predictions rather than full probability distributions

• Economic deterrents: Pricing API access based on the information value ex-
tracted rather than simple query counts

Juuti et al. (2019) proposed a defense mechanism called PRADA (Protecting against DNN
Model Stealing Attacks), which detects extraction attacks by analyzing the distribution
and diversity of queries, identifying the abnormal patterns characteristic of systematic
model extraction attempts. Such approaches can complement traditional API security
measures to provide specialized protection for machine learning assets.

7.3 Adversarial Robustness & Federated Learning

Techniques developed to enhance robustness against adversarial examples can also help
protect against model stealing and inference attacks. Models trained with adversarial
robustness techniques tend to form smoother decision boundaries that leak less informa-
tion about the underlying training data and are harder to extract through query-based
methods.

Pang et al. (2020) demonstrated that adversarially robust models exhibit significantly
reduced vulnerability to membership inference attacks compared to standard models with
similar accuracy. The regularization effect of adversarial training appears to prevent the
model from memorizing specific training examples, instead learning more generalizable
features that are less vulnerable to inference attacks.

Federated learning provides another approach to reducing privacy risks by keeping train-
ing data distributed across multiple devices or organizations rather than centralized in
one location. In federated settings, only model updates are shared rather than raw data,
potentially reducing the risk of direct data exposure. However, Nasr et al. (2019) showed
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that federated learning itself can be vulnerable to inference attacks through the shared
model updates, highlighting the need for additional privacy measures like secure aggrega-
tion and differential privacy even in federated contexts.

7.4 Detection & Monitoring Tools

Complementing preventive measures, detection systems can identify potential model steal-
ing or inference attacks in progress, enabling responsive countermeasures before significant
information is leaked. These systems typically monitor query patterns and model behavior
to identify suspicious activities.

Key approaches include:

• Watermarking: Embedding detectable patterns in model responses that reveal
when a model has been stolen (Adi et al., 2018)

• Honeypot inputs: Deliberately introducing specific inputs with distinctive out-
puts that can be used to identify stolen models

• Query pattern analysis: Using machine learning to identify query sequences
characteristic of extraction attempts

• Canary examples: Including carefully crafted examples in training data whose
presence can be detected in extracted models

Juuti et al. (2019) demonstrated that extraction attacks generate distinctive query pat-
terns that can be detected with high accuracy, potentially allowing organizations to ter-
minate suspicious sessions before significant model information is leaked. Similarly, Adi
et al. (2018) showed that watermarking techniques can reliably identify stolen models
even when attackers employ techniques to obscure the theft, providing a means to enforce
intellectual property rights when extraction does occur.

8 Conclusion

Model stealing and inference attacks represent a growing challenge at the intersection
of cybersecurity, privacy, and intellectual property protection. As organizations increas-
ingly depend on machine learning models for competitive advantage and critical decision-
making, the security of these models becomes essential to business operations and data
privacy compliance.

The attacks discussed in this article highlight the unique vulnerabilities that emerge when
machine learning systems are deployed in adversarial environments. Traditional security
approaches designed for conventional software systems often prove insufficient against
techniques specifically targeting the statistical nature of machine learning models and
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their training processes. Organizations must recognize that protecting AI assets requires
specialized security measures addressing their unique characteristics and vulnerabilities.

Looking toward the future, several trends suggest that model stealing and inference at-
tacks will continue to evolve in sophistication and impact. The growing deployment of
edge AI brings models closer to potential adversaries, introducing new physical attack
vectors beyond API-based approaches. The increasing use of federated and collaborative
learning creates complex trust boundaries that traditional security models struggle to
address. Meanwhile, advances in differential privacy and secure multi-party computation
offer promising directions for more robust protection, albeit with continued trade-offs
between security, privacy, and utility.

For organizations developing or deploying machine learning systems, the implications are
clear: security and privacy considerations must be integrated throughout the AI develop-
ment lifecycle rather than added as afterthoughts. From data collection and preprocess-
ing through model training, evaluation, deployment, and monitoring, each stage presents
opportunities to enhance resistance to stealing and inference attacks. Cross-functional
collaboration between data scientists, security professionals, and privacy experts becomes
essential for building AI systems that remain both effective and secure in adversarial
environments.

While perfect protection against all possible attacks remains elusive, the defensive strate-
gies outlined in this article provide a framework for significantly raising the cost and
difficulty of successful attacks. By combining technical measures like differential pri-
vacy and adversarial robustness with operational practices like detection and monitoring,
organizations can develop defense-in-depth approaches appropriate to their specific risk
profiles and use cases.

As machine learning continues its expansion into critical applications across industries,
the security of these systems becomes not merely a technical concern but a fundamental
business requirement. Organizations that proactively address model stealing and inference
vulnerabilities will be better positioned to maintain the integrity, privacy, and value of
their AI investments in an increasingly adversarial digital landscape.
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Figure 1: Model Stealing Attack Flow
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Table 1: Comparison of Model Stealing and Inference Attacks

Attack
Type

Objective Techniques Defenses

Model Steal-
ing

Extract functional-
ity or parameters of
target model

Query-based
extraction, Knowl-
edge distillation,
Transfer learning

API limitations,
Watermarking,
Output perturba-
tion

Membership
Inference

Determine if spe-
cific data was used
in training

Shadow models,
Confidence anal-
ysis, Statistical
patterns

Differential pri-
vacy, Regulariza-
tion, Confidence
reduction

Property In-
ference

Extract dataset
properties without
identifying specific
examples

Statistical analysis,
Meta-classifiers,
Feature correlation

Differential privacy,
Federated learning,
Information filter-
ing

Model Inver-
sion

Reconstruct repre-
sentative examples
of training classes

Gradient optimiza-
tion, GAN-based
reconstruction,
Input optimization

Prediction trunca-
tion, Feature se-
lection, Ensemble
methods
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